Fiber Optic Communications Ch 4. Optical amplifiers

Contents

- Introduction
- Ch 1 Optical fiber
- Ch 2 Optical transmitters
- Ch 3 Optical receivers
- Ch 4 Optical amplifiers
- Ch 5 Dispersion Management
- Ch 6 Multichannel Systems
- Ch 7 Optical access systems
- Ch 8 Other optical systems

Optical amplifier types

- Doped fiber amplifiers use excitation of ions in the host fiber
 - The erbium-doped fiber amplifier (EDFA) is most common
 - Optically pumped by laser light at higher energy (shorter wavelength)
- Raman and Brillouin amplifiers use nonlinear processes to transfer energy from the pump wave to the signal
 - Vibrations (phonons) in the silica glass are involved in the process
- Parametric amplifiers use a nonlinear process (FWM) to transfer energy from the pump wave to the signal
- Semiconductor optical amplifiers (SOA) are electrically pumped
 - Also called semiconductor laser amplifier (SLA)
 - In principle, a semiconductor laser biased below threshold

Amplifier applications

Four main applications:

- In-line: Compensates for transmission losses
- Power amp: Increases the transmitter output power
- Pre-amp: Enhances the sensitivity of the receiver
- (LAN amp: Compensates for coupling losses in a network)

General concepts

- Amplification can be *lumped* or *distributed*
 - An EDFA is lumped
 - · Gain occurs in a short piece of fiber
 - Raman amplifiers are often distributed
 - Gain occurs within the transmission fiber itself
- An EDFA relies on stimulated emission
 - A stimulated transition to a lower energy level ⇒ emission of a photon
 - Energy is "pumped" into the medium to induce population inversion
 - Without population inversion, absorption will dominate
 - Even in the absence of an input photon, spontaneous emission occurs
 - Will add noise in optical amplifiers
- In a Raman amplifier, power is transferred from a pump wave
 - Pump has shorter wavelength (~1.45 μm for 1.55 μm signal)
 - Pumping can be done in forward or backward direction (or both)
 - Backward pumping minimizes transfer of pump intensity noise

Benefits and requirements of Optical Amplif

Benefits:

- Eliminates the need for optoelectronic regenerators in loss-limited systems
- Can improve the receiver sensitivity
- Can increase the transmitted power
- Can be used at all bit rates and for all modulation formats
- Can amplify many WDM channels simultaneously

Requirements:

- An ideal amplifier has
 - High gain, high output power, and high efficiency
 - Large gain bandwidth
 - No polarization sensitivity
 - Low noise
 - No crosstalk between WDM channels
 - Ability to amplify broadband analog and digital signals (kHz – 100's GHz)
 - low coupling losses to optical fibers

M

Optical amplifiers

Lumped versus distributed amplification

- Lumped amplification
 - The optical power decreases as $P_{out} = P_{in} \exp(-\alpha z)$
 - With amplifier spacing L_A , the gain is adjusted to $G = \exp(\alpha L_A)$
 - Typical spacing is 30–100 km
 - The spacing must not necessarily be uniform
- Distributed amplification

$$\frac{dp(z)}{dz} = [g_0(z) - \alpha]p(z)$$

- Denoting the gain by $g_0(z)$, we get
- Ideally g₀(z) = α, but the pump
 power is not constant ⇒ gain decreases with distance from pump source
- Condition for compensation over distance L_A is

$$\int_{0}^{L_{A}} g_{0}(z) dz = \alpha L_{A}$$

L_A is then known as pump-station spacing

Bidirectional pumping scheme

- In bidirectional pumping, the gain is $g(z) = g_1 \exp(-\alpha_p z) + g_2 \exp[-\alpha_p (L_A z)]$
 - $\alpha_{\scriptscriptstyle D}$ is the loss at the pump wavelength
 - g_1 and g_2 are constants proportional to the launched pump power
- Assuming equal pump powers and that initial and final signal power = 1

$$p(z) = \exp \left[\alpha L_A \left(\frac{\sinh[\alpha_p(z - L_A/2) + \sinh(\alpha_p L_A/2)}{2 \sinh(\alpha_p L_A/2)} \right) - \alpha z \right]$$

Assuming backward pumping $(g_1 = 0)$

$$p(z) = \exp\left[\alpha L_A \left(\frac{\exp(\alpha_p z) - 1}{\exp(\alpha_p L_A) - 1}\right) - \alpha z\right]$$
Figure shows backwards and bidirectional Raman amplification
$$- \text{ EDFA case shown for comparison}$$

- - EDFA case shown for comparison
 - Raman evens out power fluctuation

Gain in a pumped medium

- We consider
 - A two-level system, i.e., there are two different energy levels
 - Population inversion is obtained with either optical or electrical pumping
- The gain coefficient, g [m⁻¹], depends on the frequency ω and the intensity P of the signal being amplified
- The gain has a Lorentzian shape

$$g(\omega) = \frac{g_0}{1 + (\omega - \omega_0)^2 T_2^2 + P/P_{\text{sat}}}$$

- g_0 is the peak gain coefficient determined by the amount of pumping
- $-\omega_0$ and T_2 are material parameters
- The saturation power is denoted by P_{sat}
- When $P = P_{sat}$, we have

$$g(\omega_0) = \frac{1}{2}g_0$$

Unsaturated gain

- When P << P_{sat}, we can neglect the saturation term
- The FWHM bandwidth of the spectrum is

$$\Delta v_g = \Delta \omega_g / (2\pi) = 1/(\pi T_2)$$

- The amplifier bandwidth is of more interest
 - Use

$$\frac{dP(z)}{dz} = g(\omega)P(z)$$

to get the power gain

$$P(z) = P(0) \exp[g(\omega)z]$$

The amplifier bandwidth is obtained from

$$G(\omega) = \frac{P_{\text{out}}}{P_{\text{in}}} = \frac{P(L)}{P(0)} = \exp[g(\omega)L]$$

and is found to be

$$\Delta v_a = \Delta v_g \sqrt{\frac{\ln 2}{g_0 L - \ln 2}}$$

Saturated gain

Study the gain at the gain peak

$$\frac{dP(z)}{dz} = \frac{g_0 P(z)}{1 + P(z)/P_{\text{sat}}}$$

• Integrating using $P(0) = P_{in}$ and $P(L) = P_{out}$, we get

$$G = \frac{P_{\text{out}}}{P_{\text{in}}} = G_0 e^{-\frac{G-1}{G} \frac{P_{\text{out}}}{P_{\text{sat}}}} \quad G_0 = e^{g_0 L}$$

- $-G_0$ is the small signal gain
- The **output saturation power** is defined as the power when $G = G_0/2$
 - Independent of G_0 for large gain

$$P_{\text{out}}^{\text{sat}} = \frac{G_0 \ln 2}{G_0 - 2} P_{\text{sat}} \approx \{G_0 >> 1\} \approx P_{\text{sat}} \ln 2 \approx 0.7 P_{\text{sat}}$$

Erbium-doped fiber amplifiers (EDFA)

- The silica fiber acts as a host for erbium ions.
 - Erbium can provide gain close to 1.55 μm
 - Optically pumped to an excited state to obtain gain

Pumping and gain spectrum

- The energy levels of Er³⁺ ions have energy levels suitable to amplify light in the 1550 nm region
 - Gain peak is at 1530 nm
 - Bandwidth is ~40 nm
- The EDFA is optically pumped at 1480 nm or 980 nm
 - 980 nm gives better performance
- Absorption and gain spectra are seen in the figure
 - Absorption is for unpumped fiber
 - Gain spectrum is shifted towards longer wavelengths

EDFA energy states

- Energy levels in Erbium are broadened into bands
 - The gain spectrum is continuous
- Typical density of Erbium in the fiber is 10¹⁹ ions/cm³
 - Relative concentration of ≈ 500 ppm compared to index-raising dopants
 - Erbium is a small perturbation

- Two possible pump wavelengths:
 - 980 nm (${}^{4}I_{15/2} {}^{4}I_{11/2}$ transition), decays rapidly to ${}^{4}I_{13/2}$
 - 1480 nm (${}^{4}I_{15/2} {}^{4}I_{13/2}$ transition), pumping to edge of the first excited state
- The ${}^4\text{I}_{13/2}$ state is called the meta-stable state, lifetime of \approx 10 ms
- Usually sufficient to consider only the ground state and the meta-stable state
 - The EDFA can be approximated as a two-level system

EDFA gain spectrum

- The EDFA gain spectrum depends on
 - The co-dopants (usually germanium)
 - The pump power
 - The erbium concentration
- Figure shows typical gain spectrum at large pump power and absorption spectrum (without pumping)
- The transition cross-sections describe the medium capability of producing gain and absorption
 - the EDFA cross-section is different for absorption and emission and different for the pump (σ_p^a, σ_p^e) and the signal (σ_s^a, σ_s^e)

EDFA characteristics

Advantages

- High gain (up to 50 dB possible)
- Low noise figure (3–6 dB) (noise is discussed in next lecture)
- High saturation power (> 20 dBm)
- Small coupling loss to optical fiber
- No cavity ⇒ no gain frequency dependence due to reflections
- No polarization dependence
- Does not chirp signal
- Long excited state population lifetime ⇒ no crosstalk

Disadvantages

- Not very compact (compared to a semiconductor laser)
- Operates at a fixed wavelength
- Relies on external optical pumps (not electrically pumped)

Two-level model

- The erbium population density is N_2 in the meta-stable state and N_1 in the ground state $\Rightarrow N_1 + N_2 = N_t = \text{total erbium density}$
- We here assume $\sigma_p^a = \sigma_p$, $\sigma_p^e \approx 0$, $\sigma_s^a \approx \sigma_s^e = \sigma_s$, loss is negligible
- The *rate equations* describe the evolution of the densities

$$\frac{dN_2}{dt} = \sigma_p N_1 \Phi_p + \sigma_s (N_1 - N_2) \Phi_s - \frac{N_2}{T_1} \qquad \frac{dN_1}{dt} = -\frac{dN_2}{dt}$$

- The photon fluxes are
 - for the fiber modes

•
$$a_{p,s}$$
 are the cross-sectional area for the fiber modes
$$\Phi_p = \frac{P_p}{a_p h v_p} \quad \Phi_s = \frac{P_s}{a_s h v_s}$$

- Signal and pump powers evolve according to

$$- \Gamma_{p,s} \text{ are the mode} \\ \text{confinement factors} \qquad \frac{dP_s}{dz} = \sigma_s \Gamma_s (N_2 - N_1) P_s \qquad \frac{dP_p}{dz} = -\sigma_p \Gamma_p N_1 P_p$$

This gives

$$\frac{dN_2}{dt} = -\frac{1}{\Gamma_p a_p h v_p} \frac{dP_p}{dz} - \frac{1}{\Gamma_p a_s h v_s} \frac{dP_s}{dz} - \frac{N_2}{T_1}$$

Two-level model

A steady-state solution is obtained by setting the time derivative to zero

$$N_{2} = -\frac{T_{1}}{\Gamma_{p}a_{p}h\nu_{p}}\frac{dP_{p}}{dz} - \frac{T_{1}}{\Gamma_{s}a_{s}h\nu_{s}}\frac{dP_{s}}{dz}$$

We obtain equations for the powers according to

$$\frac{dP_{s}}{dz} = \frac{(P_{p}^{'} - 1)\alpha_{s}P_{s}}{1 + 2P_{s}^{'} + P_{p}^{'}} \qquad \frac{dP_{p}}{dz} = -\frac{(P_{s}^{'} + 1)\alpha_{p}P_{p}}{1 + 2P_{s}^{'} + P_{p}^{'}}$$

- where $\alpha_{p,s} = \sigma_{p,s} \Gamma_{p,s} N_t$ are pump and signal absorption coefficients and

$$P_{p}^{'} = \frac{P_{p}}{P_{p}^{\text{sat}}} \qquad P_{s}^{'} = \frac{P_{s}}{P_{s}^{\text{sat}}} \qquad P_{p,s}^{\text{sat}} = \frac{a_{p,s}h\nu_{p,s}}{\sigma_{p,s}T_{1}}$$

• Use N_1 and N_2 solutions in P_s and P_p eqs on last slide, integrate z = 0 to L

$$\frac{P_p(L)}{P_p(0)} = e^{-\alpha_p L} \exp \left[\frac{P_p(0) - P_p(L)}{P_p^{\text{sat}}} + \frac{\Gamma_p \nu_p a_p}{\Gamma_s \nu_s a_s} \frac{P_s(0) - P_s(L)}{P_p^{\text{sat}}} \right]$$

$$\frac{P_s(L)}{P_s(0)} = e^{-\alpha_s L} \exp \left[\frac{P_s(0) - P_s(L)}{P_s^{\text{sat}}/2} + \frac{\Gamma_s \nu_s a_s}{\Gamma_p \nu_p a_p} \frac{P_p(0) - P_p(L)}{P_s^{\text{sat}}/2} \right]$$

EDFA gain modeling results

- The (implicit) analytical expressions can be used to study the EDFA gain
- Pump power increase ⇒ small-signal gain increases
 - Until all ions are excited, full population inversion, gives lowest noise figure
- Longer EDFA ⇒ more ions to excite ⇒ (potentially) larger gain
- For fixed pump power, an optimal length exists that maximizes the gain
 - shorter fiber ⇒ the pump power is not fully used
 - too long fiber ⇒ part of EDFA is not sufficiently pumped
- 35 dB gain can be realized with < 10 mW pump power

System aspects of EDFAs

Multi-channel amplification in EDFAs:

- $T_{1.EDFA} \approx 10$ ms, the amplifier is "slow" to react on changing input power
 - No problems related to gain modulation when doing WDM amplification

Accumulation of ASE:

- In cascaded EDFAs, ASE will cause two particular problems
 - Increasing degradation of the SNR after each amplifier
 - Eventually gain saturation caused by the ASE ⇒ less signal gain

Pulse amplification in EDFAs:

- Amplification of pulses in saturated EDFAs do not suffer from chirp or distortion due to gain dynamics
- For very short pulses (< 1 ps) however:
 - Gain is reduced in the spectral wings due to the finite bandwidth
 - GVD and nonlinearities will influence the pulse (EDFA length ~ 100 m)

Raman amplifiers

- Raman amplifiers are based on stimulated Raman scattering
- The pump and the signal co-propagate
 - Power is transferred during transmission
 - The pump wavelength is shorter than the signal wavelength
 - The excess energy is given to the medium (the fiber)
 - · A molecular vibration (optical phonon) is created
- The pump and signal can propagate in different directions

Raman gain and bandwidth

- The Raman gain spectrum is a property of amorphous glass
- The Raman gain coefficient is proportional to the pump intensity I_p

$$g(\omega, z) = g_R(\omega)I_p(z) = \frac{g_R(\omega)}{a_p}P_p(z)$$

- a_p is the cross-sectional area of the pump beam, depends on fiber type
 - DCF has a small core diameter and a large g_R/a_p
 - Figure shows g_R/a_p and normalized gains
- Gain peaks at 13.2 THz
 - Shift between absorbed and emitted photons is called Stokes shift
 - Similar gain spectra for all fibers
 - The FWHM of the gain peak is nearly 6 THz
- Requires rather high powers
 - Example (see the book): G > 20 dB requires > 5 W in a 1-km-long fiber

Raman induced signal gain

- Consider a CW signal and a CW pump
 - Frequency ratio occurs since pump photons have higher power

$$dP_{s}/dz = -\alpha_{s}P_{s} + (g_{R}/a_{p})P_{p}P_{s}$$

$$dP_{p}/dz = -\alpha_{p}P_{p} - (\omega_{p}/\omega_{s})(g_{R}/a_{p})P_{s}P_{p}$$

If the pump is undepleted (affected only by loss), we have

$$P_s(L) = P_s(0) \exp[(g_R/a_p)P_p(0)L_{\text{eff}} - \alpha_s L]$$
 $L_{\text{eff}} = [1 - \exp(-\alpha_p L)]/\alpha_p$

• If the pump is undepleted (affected only by loss), we have
$$P_s(L) = P_s(0) \exp \left[(g_R / a_p) P_p(0) L_{\text{eff}} - \alpha_s L \right] \quad L_{\text{eff}} = \left[1 - \exp(-\alpha_p) P_p(0) L_{\text{eff}} - \alpha_s L \right] \quad L_{\text{eff}} = \left[1 - \exp(-\alpha_p) P_p(0) L_{\text{eff}} \right]$$
• The amplifier gain is given by
$$G_A = \exp(g_0 L), \quad g_0 = g_R \left(\frac{P_0}{a_p} \right) \left(\frac{L_{\text{eff}}}{L} \right) \approx \{\alpha_p L >> 1\} \approx \frac{g_R P_0}{a_p \alpha_p L}$$
• Obtained as (output power with Raman)/ (output power without Raman)

- Figure shows:
 - Amplifier gain increases exponentially...
 - ...until gain saturation occurs

Raman induced signal gain

- The pump supplies the signal with power
 - When the transferred energy is significant, the pump is depleted
 - The gain is decreased, referred to as gain saturation
- The saturated amplified gain can be found numerically...
 - Like in figure on previous slide
- ...or analytically, assuming $\alpha_s = \alpha_p$, as

$$G_{s} = \frac{(1+r_{0})\exp(-\alpha_{s}L)}{r_{0} + G_{A}^{-(1+r_{0})}}, \ r_{0} = \frac{\omega_{p}}{\omega_{s}} \frac{P_{s}(0)}{P_{p}(0)}$$

- Figure shows gain-saturation characteristics
 - Gain is reduced by 3 dB when $G_A r_0 \approx 1$
 - In a system, Raman amplifiers typically operate in the unsaturated regime

Multiple-pump Raman amplification

- A WDM system with many channels require broadband amplifiers
 - 100 channels may require uniform gain over 70–80 nm (~10 THz)
- Broadband amplification can be achieved with
 - Hybrid EDFA/Raman amplification
 - Raman amplification using multiple pump lasers
- Multiple-pump Raman amplification
 - Will set up a superposition of gain spectra
 - Is more broadband since it is flatter
 - Requires careful selection of the pump wavelengths
 - Will determine the gain ripples
 - Requires consideration of pump-pump interactions
 - The pump waves are affected by the Raman interaction
 - In general, this is studied numerically
 - A large coupled system of differential equations must be solved

Noise in optical fiber

- Noise from optical amplifiers
 - EDFA noise
 - Raman noise
- Optical SNR (OSNR), noise figure, (electrical) SNR
- Amplifier and receiver noise
 - ASE and shot/thermal noise
- Preamplification for SNR improvement

Amplifier noise

- All amplifiers add noise
 - To amplify (make a larger copy), a physical device must "observe" the signal
 - Cannot be done without perturbing the signal
 - Assured by the Heisenberg uncertainty principle
- Lumped and distributed amplification have different performance
- Noise comes from spontaneously emitted photons
- These have random
 - direction
 - polarization
 - frequency (within the band)
 - phase
- Some of these add to the signal
 - Causes intensity and phase noise

Definition of the optical SNR

- Optical signals are often characterized by the optical SNR (OSNR)
 - Easily measured with an optical spectrum analyzer (OSA)
 - Makes signal monitoring in the lab easy ⇒ is very popular
- The definition of the OSNR is

$$\text{OSNR} = \frac{P_{\text{signalX}} + P_{\text{signal,Y}}}{P_{\text{noiseX}} + P_{\text{noise,Y}}} = \{ \text{For single polarization signal} \} = \frac{P_{\text{signal}}}{2P_{\text{ASE}}}$$

- The index X and Y denote the two polarizations
- The OSNR is related to the SNR, Q, and BER
- OSNR is usually normalized to a 0.1 nm bandwidth
 - Entire signal power is included, noise is measured over 0.1 nm
 - Implies required OSNR (for given BER) is bit rate-dependent

EDFA noise

- The noise is called amplified spontaneous emission (ASE)
 - Is being amplified since there is gain
 - Will reach the receiver (remaining optical path is amplified)
- The ASE power at the output of the EDFA

$$P_{\rm ASE} = S_{\rm ASE} \Delta \nu_o = n_{\rm sp} h \, \nu_0 (G-1) \Delta \nu_o$$

- $-\Delta v_0$ is the effective bandwidth of the optical filter used to suppress noise
- S_{ASE} is the (onesided) noise power spectral density (PSD)
- This is the power per polarization
- $n_{\rm sp}$ is the **spontaneous-emission factor** also known as the **population-inversion factor**
 - For an EDFA

$$n_{\rm sp} = \frac{\sigma_{\rm s}^{e} N_{2}}{\sigma_{\rm s}^{e} N_{2} - \sigma_{\rm s}^{a} N_{1}} \approx \frac{N_{2}}{N_{2} - N_{1}} > 1$$

OSNR due to EDFA noise

- The OSNR is reduced each time a signal is amplified
 - Each EDFA add to the noise PSD due to the generation of more ASE
- After N_A amplifiers in a link with span loss equal to the gain in each amplifier and with identical EDFA noise performance, we have

$$OSNR = \frac{P_{in}}{N_A 2P_{ASE}} = \frac{P_{in}}{N_A 2n_{sp}h \nu_o \Delta \nu_o (G-1)} \approx \frac{P_{in}}{N_A 2n_{sp}h \nu_o \Delta \nu_{0.1} G}$$

• In dB and dBm at 1550 nm and $\Delta v_0 = 0.1$ nm, we have

$$OSNR_{dB} = P_{in} [dBm] - N_A [dB] - 2n_{sp} [dB] - G[dB] + 58 dBm$$

OSNR due to EDFA noise, example

What is the max. transmission distance with 100 km or 50 km EDFA spacing?

- A 10 Gbit/s system with a OSNR requirement of 20 dB
- The loss is 0.25 dB/km and $2n_{sp} = 5 dB$
- The launched power into each span is 1 mW per WDM channel

$$OSNR_{dB} = P_{in} [dBm] - N_A [dB] - 2n_{sp} [dB] - G[dB] + 58 dBm$$

- L_A = 100 km \Rightarrow N_A = 8 dB = 6.3 \Rightarrow 6 amps \Rightarrow 700 km
- L_A = 50 km ⇒ N_A = 20.5 dB = 112.2 ⇒ 112 amps ⇒ 5650 km
- The amplifier spacing plays a critical role for the OSNR
 - Short L_{Δ} : Noise accumulates slowly \Rightarrow high OSNR at receiver
 - Long L_A: Few EDFAs are needed ⇒ system cost is lower
- Shows trade-off between cost and performance
 - Techniques that enable cost reduction are desirable
 - This can, for example, be error correction or distributed amplification
- Hints that distributed amplification may perform better

OSNR due to EDFA noise, amplifier spacing

- We can express the number of amplifiers as
 - L_T is the total system length
 - This gives the OSNR

$$OSNR = \frac{P_{in} \ln G}{2n_{sp}h \nu_0 \Delta \nu_{0.1} \alpha L_T (G-1)}$$

We see that

$$P_{\rm ASE} \propto \frac{G-1}{\ln G}$$

- Figure shows maximum system length = "system reach"
 - OSNR = 20 dB
 - $-\alpha = 0.2 dB/km$
 - $-n_{\rm sp} = 1.6$
 - $-\Delta v_0 = 100 \text{ GHz}$

 $N_A = \frac{\alpha L_T}{\ln G}$

Raman amplifier noise

- Noise is generated by spontaneous Raman scattering
- The noise PSD per polarization after an amplified fiber is

$$S_{\text{ASE}} = n_{\text{sp}} h \, v_0 G(L) \int_0^L \frac{g_0(z)}{G(z)} dz \qquad G(z) = \exp \left(\int_0^z [g_0(\zeta) - \alpha_s] d\zeta \right) \qquad g_0(z) = \frac{g_R P_p(z)}{a_p}$$

- Depends on the net power gain, G(L)
 - Observe: This is net gain, for a transparent system G(L) = 1
- Depends on the distribution of gain $g_0(z)$
- $n_{\rm sp}$ has a different definition for Raman amplification
 - h is Planck's constant
 - v_R is the Raman shift
 - · Maximum gain at 13.2 THz
 - k_B is Boltzmann's constant
 - T is the temperature, ≈ 293 K
- This gives $n_{\rm sp}$ = 1.13, $n_{\rm sp} \rightarrow$ 1 as $T \rightarrow 0$

$$n_{\rm sp} = \frac{1}{1 - \exp(-h v_R / k_B T)}$$

Raman amplifier noise, example

- The pump experiences loss ⇒ gain is not constant
 - Anyway, as an example, study an amplified transparent fiber, g_0 = α_s
 - We then have...

$$G(z) = \exp\left(\int_0^z \left[g_0(\zeta) - \alpha_s\right] d\zeta\right) = \exp\left(\int_0^z 0 \, d\zeta\right) = 1$$

...and the noise PSD becomes

$$S_{\text{ASE}} = n_{\text{sp}} h \nu_0 G(L) \int_0^L \frac{g_0(z)}{G(z)} dz = n_{\text{sp}} h \nu_0 \int_0^L \alpha_s dz = n_{\text{sp}} h \nu_0 \alpha_s L$$

We compare this with the case where an EDFA is placed at the end

$$S_{ASE} = n_{sp} h v_0(G-1) = n_{sp} h v_0(e^{\alpha_s L} - 1)$$

- $n_{\rm sp}$ is similar in both cases (somewhat better for Raman)
- The final terms are very different, study $\exp(\alpha_s L) = 20 \text{ dB}$

$$\alpha_{s}L \approx 4.6, (e^{\alpha_{s}L} - 1) = 99$$

Distributed amplification can be vastly superior to lumped amplification

OSNR due to Raman noise

- Pump stations are set up spaced by L_A
 - Gain is designed to make $P_s(z = nL_A) = P_{in}$
- The OSNR is given by

$$OSNR = \frac{P_{in}}{2N_A S_{ASE} \Delta \nu_{0.1}}$$

- S_{ASE} must be found using the general expression
- Depends on pumping; forward, backward, or both
- Figure shows ASE PSD and OSNR, fiber is 100 km long
 - Pumping is bidirectional to varying degree
 - System is transparent at 0 dB net gain
 - Forward pumping is better than backward pumping
 - Nonlinearities are not considered

Raman amplifier performance

- In general, it is preferable to amplify a strong signal
 - For a given gain (and added noise PSD), the (O)SNR decrease is smaller
 - Forward pumping is better than backward pumping
 - Unfortunately, signal power must be limited due to nonlinearities
- The Raman amplifier is affected by several phenomena:
 - Double Rayleigh scattering occurs
 - Light scattered back is scattered again
 - Pump-noise transfer decreases the SNR
 - The gain changes with the pump intensity fluctuations
 - The amplifier is polarization dependent
 - Is counteracted using polarization scrambling

Electrical signal-to-noise ratio (SNR)

- The Q and BER are determined by the SNR in the detected current
 - Agrawal calls this "electrical signal-to-noise ratio" to separate from OSNR
- An EDFA can improve the sensitivity of a thermally noise limited receiver
 - A preamplified optical receiver
 - The added optical noise can be much smaller than the thermal noise

- The generated photocurrent in the receiver is
 - E_{cp} = ASE co-polarized with signal
 - E_{op} = ASE orthogonal with signal
 - $-i_s$ = Shot noise
 - $-i_T$ = Thermal noise

- $I = R_d \bigg(\Big| \sqrt{G} E_s + E_{\rm cp} \Big|^2 + \Big| E_{\rm op} \Big|^2 \bigg) + i_s + i_T$
- The ASE has a broad spectrum, and can be written
 - The magnitude square is a multiplication ⇒ new frequencies are generated ⇒ "beating"

$$E_{\rm cp} = \sum_{m=1}^{M} (S_{\rm ASE} \Delta v_s)^{1/2} \exp(i\phi_m - i\omega_m t)$$

Electrical signal-to-noise ratio (SNR)

- The received electrical current is

 - i_{sp-sp} = ASE-ASE beat noise term
 - $i_{\text{sig-sp}}$ = signal-ASE beat noise term $I = R_d G P_s + i_{\text{sig-sp}} + i_{\text{sp-sp}} + i_s + i_T$

The variance of the noise terms are

$$\sigma_{\text{sig-sp}}^2 = 4R_d^2 G P_s S_{\text{ASE}} \Delta f \qquad \sigma_{\text{sp-sp}}^2 = 4R_d^2 S_{\text{ASE}}^2 \Delta f (\Delta v_0 - \Delta f / 2)$$

$$\sigma_s^2 = 2q \left[R_d (G P_s + P_{\text{ASE}}) \right] \Delta f \qquad \sigma_T^2 = (4k_B T / R_L) \Delta f$$

- Δv_0 is bandwidth of optical bandpass filter (rejects out-of-band noise)
- The SNR is here defined as

SNR =
$$\frac{\langle I \rangle^2}{\sigma^2} = \frac{(R_d G P_s)^2}{\sigma_{\text{sig-sp}}^2 + \sigma_{\text{sp-sp}}^2 + \sigma_s^2 + \sigma_T^2}$$

Impact of ASE on SNR

- Let us compare the SNR without and with amplification by an EDFA
 - Amplifier and bandpass filter is inserted before the receiver

$$SNR_{no amp} = \frac{(R_d P_s)^2}{\sigma_s^2 + \sigma_T^2}, SNR_{amp} = \frac{(R_d GP_s)^2}{\sigma_{sig-sp}^2 + \sigma_{sp-sp}^2 + \sigma_s^2 + \sigma_T^2}$$

- Notice that σ_s are different in the two cases (σ_T stays the same)
- We neglect $\sigma_{\text{sp-sp}}$ and the noise current contribution to shot noise to get

$$\frac{\mathrm{SNR}_{\mathrm{amp}}}{\mathrm{SNR}_{\mathrm{no\,amp}}} = \frac{(R_d G P_s)^2}{(4 R_d^2 G P_s S_{\mathrm{ASE}} \Delta f) + (2 q R_d G P_s \Delta f) + \sigma_T^2} \frac{(2 q R_d P_s \Delta f) + \sigma_T^2}{(R_d P_s)^2}$$

We use the PSD and the ideal responsivity

$$S_{\text{ASE}} = n_{\text{sp}} h \nu_0(G - 1) \approx \{G >> 1\} \approx n_{\text{sp}} h \nu_0 G$$
 $R_d = q/(h \nu_0)$

- We get

$$\frac{\text{SNR}_{\text{amp}}}{\text{SNR}_{\text{no amp}}} = \frac{1 + k_T}{2n_{\text{sp}} + 1/G + k_T/G^2} \qquad k_T = \frac{\sigma_T^2}{2qR_d P_s \Delta f}$$

- Notice: k_T is ratio (thermal noise)/(shot noise) without amplification
- All quantities in the denominator (2qR_dP_s∆f) are kept constant!

A thermal noise-limited receiver

- How is the SNR changed in the thermal limit?
- First assume that thermal noise dominates before and after amplification

$$\frac{\text{SNR}_{\text{amp}}}{\text{SNR}_{\text{no amp}}} = \frac{1 + k_T}{2n_{\text{sp}} + 1/G + k_T/G^2} \approx \frac{k_T}{k_T/G^2} = G^2$$

- There is a huge improvement in the SNR
 - Signal power is increased, noise power remains constant
- However, at high G, we cannot ignore the other noise terms
- Study the realistic case that thermal noise dominates before and is negligible after amplification

$$\frac{\text{SNR}_{\text{amp}}}{\text{SNR}_{\text{no amp}}} = \frac{1 + k_T}{2n_{\text{sp}} + 1/G + k_T/G^2} \approx \frac{k_T}{2n_{\text{sp}} + 1/G} \approx \frac{k_T}{2n_{\text{sp}}}$$

- SNR improvement saturates as G is increased
- Improvement can be very large

In the thermal limit, amplification improves the SNR

A shot noise-limited receiver, noise figure

- Now instead assume that the optical signal has high power
 - Thermal noise is negligible

$$\frac{{\rm SNR}_{\rm amp}}{{\rm SNR}_{\rm no\,amp}} = \frac{1 + k_T}{2n_{\rm sp} + 1/\,G + k_T\,/\,G^2} \approx \frac{1}{2n_{\rm sp} + 1/\,G} \approx \frac{1}{2n_{\rm sp}}$$

The SNR is decreased by the amplification

EDFA amplification of a perfect signal decreases the SNR by $> 2n_{\rm sp}$ (> 3dB)

The noise figure is defined

$$NF = F_n \equiv \frac{(SNR)_{in}}{(SNR)_{out}}$$

- The SNR values are what you would obtain by putting an ideal receiver before and after an EDFA, respectively
 - Ideal means shot noise-limited, 100% quantum efficiency
- Our study above has provided us with the (inverse) minimum value

$$F_n \approx 2n_{\rm sp} \ge 2$$

Noise figure

· For an EDFA, the noise figure is

$$F_n \approx 2n_{\rm sp}$$
 $n_{\rm sp} = \frac{\sigma_s^e N_2}{\sigma_s^e N_2 - \sigma_s^a N_1} \approx \frac{N_2}{N_2 - N_1} > 1$

- In reality, N_1 and N_2 change along the EDFA
 - Pump power and signal power are not constant
 - The rate equations can be solved numerically
- Figure shows
 - Noise figure and amplifier gain as a function of...
 - ...pump power and amplifier length
- A long amplifier
 - Can provide high gain
 - Requires high pump power

Noise figure

- The noise figure is increased
 - If the population inversion is incomplete (somewhere in the amplifier)
 - If there are coupling losses into the amplifier
- Pumping is facilitated by pumping at 980 nm
 - No stimulated emission caused by pump photons $(\sigma_p^e \approx 0)$
 - Corresponding energy level is almost empty (short-lived)
 - Noise figure ≈ 3 dB is possible, 3.2 dB has been measured
- With 1480 nm pumping $\sigma_p^e \neq 0$
 - Ground state will always be populated by some ions
 - Some excited ions will be stimulated by pump photons to relax
 - Noise figure is larger for this case
- Coupling into and out of an EDFA is efficient
- Typical EDFA modules have $F_n = 4-6 \text{ dB}$

SNR/OSNR relation

- In general, there is no simple relation between the OSNR and the SNF
 - OSNR is prop. to the optical power, SNR is prop. to the electrical power
 - Electrical power is proportional to the (optical power)²
 - Not true in a coherent receiver
- When signal—ASE noise is dominating we have

SNR
$$\approx \frac{(R_d G P_s)^2}{4R_d^2 G P_s S_{ASE} \Delta f} = \frac{G P_s \Delta v_{0.1}}{4 P_{ASE} \Delta f} = \frac{\Delta v_{0.1}}{2\Delta f} OSNR$$

For a single-polarization signal, we can use

$$OSNR = \frac{P_s}{2S_{ASE}\Delta\nu_{0.1}} = \frac{E_s}{S_{ASE}} \frac{f_s}{2\Delta\nu_{0.1}}$$

- E_s is the energy per symbol, f_s is the symbol rate (in baud)
- $-E_s/S_{ASE}$ is often written E_s/N_0 is digital communication literature
- The relation between E_s/N_0 and the BER depends on the type of receiver modulation format and more

Receiver sensitivity and Q factor

- When shot noise and thermal noise are negligible:
 - The statistics are not Gaussian (cannot have negative current)...
 - ...but Gaussian statistics are often used anyway for simplicity

$$\sigma_1^2 = \sigma_{\text{sig-sp}}^2 + \sigma_{\text{sp-sp}}^2 + \sigma_s^2 + \sigma_t^2 \approx \sigma_{\text{sig-sp}}^2 + \sigma_{\text{sp-sp}}^2 \quad \sigma_0^2 = \sigma_{\text{sp-sp}}^2 + \sigma_T^2 \approx \sigma_{\text{sp-sp}}^2$$

The receiver sensitivity is then

$$\overline{P}_{\text{rec}} = h v_0 F_o \Delta f \left(Q^2 + Q \sqrt{\frac{\Delta v_0}{\Delta f} - \frac{1}{2}} \right)$$

• Assuming that $P_{\text{rec}} = N_p h v_0 B$ and $\Delta f = B/2$, we get

$$\overline{N}_{p} = \frac{1}{2} F_{o} \left(Q^{2} + Q \sqrt{\frac{\Delta v_{o}}{\Delta f} - \frac{1}{2}} \right)$$

- The number of photons per bit depends on
 - The BER (via Q), the noise figure, and the receiver bandpass filter

Low-noise amplification and narrow filtering is critical for high performance

Receiver sensitivity of preamplified receiver

- Using $F_o = 2$, Q = 6, $\Delta v_0 = B \Rightarrow N_p = 43$ photons per bit on average
- The quantum limit is $N_p = 10$ photons per bit on average

 N_p = 100 is realistic with a reasonable noise figure and filter bandwidth

Relation between Q and the OSNR

- When ASE noise dominates, we have
 - Δ v_o = bandwidth of optical bandpass filter [nm]
 - Δf = equivalent receiver electrical bandwidth [GHz]

$$Q = \sqrt{125 \frac{\Delta v_o}{\Delta f}} \frac{20\text{SNR} \cdot \frac{0.1}{\Delta v_o}}{\sqrt{40\text{SNR} \cdot \frac{0.1}{\Delta v_o} + 1 + 1}}$$

If we know the OSNR and the bandwidths, we can find Q and the BER

- In figure, $\Delta v_0 = 0.4 \text{ nm}$
 - Reasonable value for a 10 Gbit/s system
- The necessary OSNR = 15–20 dB at a bit rate of 10 Gbit/s

Optimum launched power

- Amplifiers cancel the loss, but noise and nonlinearities are accumulated
 - High power ⇒ potentially higher SNR but also more nonlinear distortion
 - As power is increased, BER first drops, then increases again

There is an optimal launch power that minimizes the BER

